
in integral blackness due to destruction of the oxide flhn. With further heating, an oxide 
film is again formed on the surface of the molten metal. 

German silver specimens heated in air are characterized by higher (2-3 times) values of 
radiation characteristics throughout the investigated temperature range compared to heating 
in a helimn atmosphere. 

The no=monotonlc nature of the eT curves for the oxidized specimens may be explained 
by the fact that the thin oxide film on the specimen surface is destroyed in the temperature 
range 500-I000~ and the values of cT drop accordlngly (curves6 and 7). The oxide film is 
destroyed at a lower temperature in helium. 

For the investigated milled specimens of nickel and German silver heated in air, the 
radiation characteristics increase with temperature due to the formation of a strong oxide 
film (curves 3 and 5). Here, the blackness coefficients of these specimens at t~1000~ 
correspond to the CT of the oxidized specimens. 

Thus, heating of nickel in air at 800-1250~ is accompanied by substantial oxidation 
of its surface and an increase in integral blackness. Consequently, ingots are heated most 
rapidly in air with furnace temperatures exceeding 1000~ This mode is evidently optimal 
for heating ingots in reheat furnaces and may be recoznnended for practical application. 

. 
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HEATING OF PLATES WITH AN ABSORPTION COEFFICIENT DEPENDENT 

ON TEMPERATURE AND RADIATION FLOW 

V. V. Reznlchenko and Vl. N. Smirnov UDC 535.212.15 

Plate heating with a temperature-dependent absorption coefficient is investi- 
gated. It is shown that with increasing power density of an incident flux the 
kinetics of temperature growth undergoes pronounced qualitative changes. The 
threshold power density value at which plate heating is accompanied by darkening 
as well as the darkening time are found. Calculation results are in good agree- 
ment with experimental data. 

The elements of optical systems are now often subject to the effects of laser radiation 
flows. Semiconductor materials have found wide use in applied optics. One property of such 
materials is a clearly expressed dependence of theabsorption coefficienton temperature. Sev- 
eral studies have been devoted to the heating of semiconductor plates by optical radiation. 
Results of empirical studies have been published in [1], e.g., and theoretical results have 
been presented in [2-5]. The dependence of the absorption coefficienton temperature was ap- 
proximated in these works by either an exponential curve or a polynomial. It must be noted 
that in [2-4] the distribution function for the heat sources, determined by the Bouguer-- 
Lambert law, was linearized. Such an approach leads to results that are less than fully 
satisfactory. In particular, this formulation of the problem permits an unlimited increase 
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in temperature with a flow of finite capacity. This indicates a need to formulate a non- 
linear problem, allowing for a change in the thermal source distribution function through 
the plate thickness due to absorption. Certain parameters characterizing features of the 
kinetics of the heating of such a plate were determined in [5]. 

In the action of a flow of optical radiation with a power density in the center I and 
having a radial distribution function f(r) on a plate of radius R and thickness 2h absorbing 
radiation in accordance with the Bouguer--Lambert lawwith an absorption coefficient • the 
temperature T satisfies the equation 

kv2T - -  cv 0 T  = __ I f  (r) x (T) exp { - -  z• (T)}. (1 )  
Ot 

We will assume that on the flat surfaces of the plate z = 0 and z = 2h there is a con- 
vective exchange of heat with a heat-transfer coefficient % and a convective heat exchange 
on lateral surface r = R with a heat-transfer coefficient p. We will also assume that over 
the entire surface, together with the convective heat exchange, there is radiative heat ex- 
change in accordance with the Stefan-- Boltzmann law and that the initial temperature of the 
plate is equal to the ambient temperature To. Thus, the boundary and initial conditions ap- 
pear as follows 

aT 
k 

az 
aT 

k 
az 

aT 
k 

ar 

- -  ~, ( T  - -  To )  - -  8 a  ( T '  - -  T ~ )  [ z = o  = 0 ,  

+ L (T - -  To) -6 ~o (T '  - -  T4o) [z=--2h = 0, 

+ l~ (T - -  To) -F e(~ (T ~ - -  T[)  [r=n = 0, 

T / t = o  = To. 

(2) 

As can be seen from Fig. i, the temperature dependence of the absorption coefficient is 
approximated fairly well by the exponential function •215 

In many important practical applications, the effect of the radiation flow is such that 
the plate is heated fairly uniformly both through its thickness and along its radius. This 
fact finds empirical confirmation in the heating of germanium plates by a laser beam. More- 
over, the estimate of the radial temperature distribution below shows the validity of the 
above statement, at least for a material such as germanium. This provides a basis for intro- 
ducing into our investigation the deviation of the mean plate temperature from the initial 

~ ;;o 
Fig. i 

O.4 

L / ' /  
o 0.4 O.8 

Fig. 2 

7i 

I 
. . . . . . .  

Fig. i. The exponential dependence of absorption coefficient 
, cm -I, on temperature T, ~ at N ~ 0.2 cm -I = , ~ = 0.02 

deg -I. Experimental points, [1]. 

Fig. 2. Relative temperature 8/0o vs relative time t/to, 
wherein to, time of plate heating to temperature of 0.99 8o. 
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value O: 

= ,  
R 2~ 

R ~ ~ 
0 

( 3 )  

Having averaged Eq. (i) on the assumption that T ffi 0 + To and with allowance for boundary 
conditions (2), we obtain the equation 

dO 
- -  = I b  [I - -  exp  { - -  p exp  (~0)}1 - -  w0 - -  8or  [(0 + To) 6 - -  T~I. 

(4 )  

The following symbols are introduced at this point: 

R 

b = R -2.[ r[  (r) dr, p = 2 h ~ ;  s = hcT, 
o 

o = (R -b 2h) R - t ,  w = (~,R -a t- 2lab) R - i .  

(5) 

The solution to E q .  (4) will be found as an implicit function from the expression 

t ___ 

0 

j ' sdx (6) 

Ib [ 1 - -  exp (--  p exp (vx))l - -  w x  - -  e o v  [(x + T,,)~ - -  T ~ I  " 

As can be seen from the calculations, the results of which are shown in Fig. 2, there are 
appreciable qualitative differences in plate heating, depending on power density I. The 
dependence of temperature on time may either have one or two points of inflection or none 
at all. The values of steady-state temperature for different modes are also different. If 
we examine the heating of one of the plates studied experimentally in [i] (• - 0.2 cm-t; 
v = 0.02 deg -x ; b = 0.185; p = 0.14; v ffi 1.3; s = 3.15 J (deg .cm2)-x; w = 0.03-0.048 
W(deg �9 cm2)-x), it turns out that at low power densities --when the temperature--time de- 
pendence does not have inflection points -- the plate is heated 10-20* and remains slightly 
absorbent, i.e., in this case most of the flow passes through the plate. At high power 
densities, when inflection points appear, the plate is heated hundreds of degrees and ceases 
to be slightly absorbent (darkening occurs). A further increase in power density leads to 
a shift in the first inflection point in the direction of the origin. It can be seen from 
the functions shown in Fig. 2 that the transition from a plate-heatlng mode not accompanied 
by darkening to one with darkening is associated with the appearance of an inflectlon point. 
With a further increase in power density, this point becomes two inflection points. Conse- 
quently, the power density I* and the corresponding steady-state temperature 8* at which 
the transition from a mode without darkening to a mode with darkening occurs is determined 
from the system of equations 

d2t (OL l* )  = O; d3t (0", l* )  = O. ( 7 )  
dO z dO 3 

As the calculations showed, the first inflection point of the temperature-- time dependence 
lies in the low-temperature region, when heat exchange is mainly convective in nature. Thus, 
in determining threshold densities we may omit the terms describing radiant heat exchange. 
The problem then reduces to solution of the system of equations 

Ibpv exp {v0 - -  p exp (v0)} - -  w = 0; (8) 

(1 - -  p exp (v0)) (Ib - -  exp { - -  p exp (v0)}) - -  w0 = 0. 

It is not difficult to see that system (8) is equivalent to the two following systems: 
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f lbpv exp {vO -- p exp (vO)} -- w := O; 

[ 1 -- p exp (wO) - -  O; 

Ibpv exp {vO - -  p exp (vO)} - -  w = O; 

Ib (1 - -  exp { - -  p exp (vO)} - -  mO - -  O. 

(9) 

Let us examine the first of these derived systems. Its solution has the form 

0 1 =  l n p  I i  -- w 
v ' ~ exp(1) .  ( 1 0 )  

Let us study the integrand of Eq. (6) F(0, I). Obviously, Eq. (6) has a physical signifi- 
cance only in the region of the parameters and variable within which the integral is posi- 
tive, i.e., we assume that the plate may be heated, but not cooled, when the effect of the 
radiation on the plate is unchanging. In the case being examined, for sufficiently small 
values of p there exists the inequality 

�9 { - l  
F ( O l ,  / i )  = w ( l n p + e x p ( 1 ) - -  1 < 0 .  (ii) 

sv 

Consequently, the solution found does not belong to the region of permissible values of the 
parameters and variable. Let us examine the second system of (9). Having excluded I from 
the system, we obtain the following equation for determining x = ~8" 

I (I + px exp (x)) exp  {-- p exp (x)} = O. (12) 

Having sought a solution to the equation by Newton's approximate method and having taken 
x = i as the first approximation, we obtain 

pZ exp {2 - -  p exp (1)} + exp { - -  p exp (1)} - -  1 
x,,~, (13) 

p ( p e x p  (1) -- 1) exp {-- p exp (t)} 

o= with sufficiently small values of p 

x~ 
1 - -  p exp (1) 

1 -- 2p exp (1)" (14) 

Consequently, the threshold value of power density !* in this case is equal to: 

I*  - -  w exp{pexp( 'vO*)  ~ ' v O * }  = -- bp-----v bpv exp {p exp (x) - -  x}. ( 1 5 )  

Comparing the numerically obtained solution to Eq. (12) shown in Fig. 3 with the results 
of calculation by Eq. (13), we may be convinced of their good agreement. The values of 
parameters xo, 9, b, p, v, s, w are the same as in the calculation, the results of which 
are shown in Fig. 2. To determine the value of Io, upon reaching which the first inflection 
point is shifted in the direction of the origin and heating by the flow is for the first time 
accompanied by an increase in the absorption coefficient, the following equation should be 
used 

dZtd82 e=0 = 0. (16) 

The sought value of power density in this case has the form 

w 
I o - -  exp (p). ( 1 7 )  

bpv 

It is apparent from Fig. 2 that at power densities within the interval I* < I < Io, the 
plate is for a time slightly absorbent. It would be useful to evaluate the duration of 
this period of time, since during this period the optical element remains functional. It 
would be appropriate to connect this time with the value of integral (6) at the upper limit, 
corresponding to the first point of inflection of the temperature-- time dependence. Let us 
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examine the equation 

dOZ 
(18) 

which is equivalent to the following: 

IblJv exp {~0 -- p exp (v0)} -- w = 0. 

We will again use Newton's method to find the root. 
we find that 

I P ~' .0i~v(-~-~p) { + I n  Ibpv "1" 

(19) 

Taking zero as the first approximation, 

(20) 

If we assume that the plate is being acted upon by a flow with the power density I = w(2pbv)-* 
lying within the interval [I*, Io] being examined, then Eq. (19) takes the following form 
relative to  y = vO 

g--pexp~)= In2. (21) , 

The n u m e r i c a l  s o l u t i o n  to  Eq. (21) shown i n  F i g .  3 i s  c l o s e  to  the  approx imate  s o l u t i o n  (20 ) .  
Empirical data is presented in [i] on the darkening time of germanium specimens under the 
influence of laser radiation with different methods of cooling the plate edge. Figure 4 
shows the results of a comparison of the theoretical and empirical data. It is apparent 
from this that the theoretical values are in good agreement with the experimental values. 

The value of steady-state temperature is the root of the denominator of the integrand 
of (6). At power densities less than I*, when heating is insubstantial, the equation may be 
linearized and the terms associated with radiative heat exchange ignored. Consequently, the 
sought value 8o has the form 

0~, ~ ~ Ibp 
w - -  Ibpv " (22)  

ae';~e, 
;2 

/.0 

/ 

z / 

8 

0 
0 o.o~ QZ~ p 2O 

Fig .  3 

../.jy. 

30 z,O 50 ! 

Fig. 4 

Fig. 3. Dimensionless limited temperature ~0" and dimension- 
less temperature characterizing the onset of darkening, e~, as 
a function of parameter p specified by initial absorptivity; i) 
exact value of ~e~; 2) approximate value of v0,; 3) exact value 
of ~8"; 4) approximate value of re*. 

Fig. 4. 103"r, sec for time ofplate darkening vs power density I, 
W/cm 2, for different ways of cooling the plate edge: i) conven- 
tional air cooling; 2) cooling by kerosene at 20~ 3) cooling by 
water at 20~ Experimental points, [i]. 
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In the case where the power density exceeds I*, darkening occurs and the plate is heated to 
a temperature satisfying the condition p exp(v0) ~)I. Consequently, the equation for deter- 

mining O~ a) is written thus: 

Ib - -  coo l(0~ ) + To)' - -  T~] - -  w0~ ) = 0. (23) 

We will once more use Newton's method to determine the root. As the first approximation of 
~o (2) we will use the value 0o(2) obtained on the assumption that the temperature is deter- 
mined completely by radiative heat exchange 

The approximate value of 0o (a) 

~(o2) = [ Ib + eoVT~eov ] ~/4 - T~ 

h a s  t h e  fo rm 

(24) 

0(o2 ) . ~  4eorxo 3 (o -- To) ," to~ = Ib + eovT4o (25) 
w + 4eovo ~ eov 

In a number of cases i t  is insufficient to know the mean temperature of the plate, and it 
is necessary to determine the radial temperature distribution u(r). Such a situation arises, 
for example, in analyzing the stress state. Values found for mean steady-state temperature 

(22) and (25) allow us to linearize Eq. (i), previously averaged for plate thickness. We 
will introduce function g(r), determined by the expression 

u (r) = (0~ m) + To) (1 + g(m) (r)). (26) 

The i n d e x  m = l ,  i n  a c c o r d a n c e  w i t h  t h e  a b o v e ,  p e r t a i n s  to  h e a t i n g  u n a c c o m p a n i e d  by p l a t e  
darkening, while m = 2 corresponds to the ease of plate darkening. Equation (26) permits us 
to reduce the problem of determining the radial distribution of temperature to the problem 
of finding unknown function g(m)(r) from the equation 

1 d dg(~) _ _  _ _ r ~ . _ _ l ( m ) g ( ~ ) = _ _ q ( m )  (27) 
r dr dr 

with the boundary condition 

dg( m ) 

dr + ~(m)g(m) = ~(m). (28) 

The following symbols are introduced at this point: 

1 o ) :  2~,-- Ipvf (r) ," q<i) = l p f  (r) - -  2~0~o ~) ," =ci) _-- - -  !~ ; 

2hk 2hk (0(o ~ )-t- To) k 

[Vi): P 0(ol) ; l (2) :  ~-}-4ea(0(~ �9 
k (O(ot)-} - To) hk  ' (29) 

=C~) : [i ~ + 4ca  (0~o~)+ To) 3] k- i ;  

1~(2 > = lxO(o 2) + e(r [(0(o 2) + To) ~ - -  T 4] ," 
k (0(o2)+ To) 

/ f  (r)  - 2xo~o ~) - -  2~,~ l(r + To) '  - -  T~] 
:M2)_ L 2hk ~uo , T~) 

4 2) = 

In the case of a uniform radial distribution of power density (b = 0.5), 
ther simplified and its solution has the form 

the problem is fur- 

qr (O(m)lr - -  ar ~")) Io (rV'F--~) 
gr :": V')  + t ' ' )  {VV"~ ] ,  (R VI r  (R V-//-~)} " (30) 
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The solution found here allows us to refine the value of temperature given by Eqs. (22) and 
(25). If we take I = Io, then for w ffi 0.048 W(deg. cm)-Z; g(0) = --0.04; g(R) = --0.14 and 
for w ffi 0.042 W(deg. cm)-1; g(O) " --0.05; g(R) = --0.13. 

Thus, with a flow of optical radiation with a power density less than I*, the plate does 
not undergo appreciable heating and remains functional for as long as desired. If the plate 
is acted upon by a flow with a power density I* < I < Io, for a short time at first it is 
slightly absorbent. Here, the period of time over which the optical properties of the plate 
do not change is determined by the integral of (6) with the upper integration limit of (20). 
In the case where the power density is greater than Io, heating is from the first accompanied 
by an intensive increase in plate temperature and darkening. In this case, the plate is func- 
tional only in the short-pulse mode. 

NOTATION 

R) radius of plate; h, half-thickness of plate; r, z, cylindrical coordinates; t, time; 
T, temperature distribution; 8, deviation of mean temperature from initial temperature; e~1), 

e , steady-state values of e at low and high power densities of acting flux; el, temper- 
ature, corresponding to beginning of sharp increase in absorption coefficient; e* ,temperature 
corresponding to threshold power density; u, radial distribution of temperature; g, function 
characterizing radial distribution of temperature; To, ambient temperature; c, 7, k, specific 
heat, density, and thermal conductivity of plate material; ~, ~, heat-transfer coefficients 
on the flat and cylindrical surfaces of the plate; o, Stefan--Boltzmann constant; ~, blackness 
coefficient; ~, absorption coefficient; no, absorption coefficient corresponding to initial 
temperature; ~, parameter characterizing the temperature dependence of the absorption coef- 
ficient; I, power density in center of incident flux; f, power-density distribution with 
respect to luminescence; I*, Io, threshold power densities corresponding to heatings of plate 
with darkening and with a sharp increase in absorption from the initial moment of the effect; 
p, w, s, parameters characterizing the absorption capacity of the plate at the initial tem- 
perature, Newtonian heat exchange with the environment, and heat capacity; b, averaged charac- 
teristic of power-density distribution function; v, parameter characterizing the geometric 
properties of the plate; x, y, notation for dimensionless temperature ~%; ~, time of plate 
darkening; to, time of heating of the plate to 0.9980; F, subintegral function of the solu- 
tion of the equation; u, B, Z, parameters characterizing heat exchange of the plate with the 
environment; q, parameter characterizing heat liberation in the plate. 
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